2,915 research outputs found

    Surface protection of graphite fabric/PMR-15 composites subjected to thermal oxidation

    Get PDF
    Graphite fabric/PMR-15 laminates develop matrix cracks during long-term exposure in air at temperatures in the range of 500 to 600 F. This study was performed to demonstrate the effectiveness of incorporating graphite mat surface plies as a means of reducing the developing of matrix cracks. Celion 3000 graphite fabric/PMR-15 laminates were fabricated with graphite or graphite mat/325-mesh boron powder surface plies. Laminates without mat surface plies were also fabricated for control purposes. Composite flexural strength, flexural modulus, and interlaminar shear strength were determined at 288 C before and after long-term exposure (up to 1500 hr) in air at 316 C. The results of this study showed that the incorporation of graphite mat surface plies reduces matrix cracking and improves the elevated temperature mechanical property retention characteristics of the composites

    Low temperature cross linking polyimides

    Get PDF
    A polyimide is formed by cross linking a prepolymer formed by reacting a polyfunctional ester, a polyfunctional amine, and an end-capping unit. By providing an end-capping unit, the prepolymer is curable at a relatively low temperature of about 175 to 245 C

    Technique for the polymerization of monomers for PPQ/graphite fiber composites

    Get PDF
    Impregnation of fiber prior to appreciable polymerization completely eliminates impregnation problems encountered with use of high viscosity high molecular weight polyphenylquinoxalines (PPQ) solutions. Major part of polymerization of reactant mixture is conducted on fiber during solvent removal and final curing stages

    Preparation of polyimides from mixtures of monomeric diamines and esters of polycarboxylic acids

    Get PDF
    Polyimides having high thermal and oxidative stability are prepared by the reaction of a mixture of monomers comprising (1) a dialkyl or tetraalkyl ester of an aromatic tetracarboxylic acid; (2) an aromatic diamine; and (3) a monoalkyl or dialkyl ester of a dicarboxylic acid where in the ratio of a:b:c is n:(n+1):2, wherein n has a value from 1 to 20. The mixture of monomers is prepared in a 30 to 70 percent by weight solution of an organic solvent, a substrate impregnated with the solution and heated at 50 to 205 C to remove said solvent and form a low molecular weight prepolymer, and thereafter heated at 275 to 350 C to cure to a high molecular weight polyimide

    Thermally stable polyimides from solutions of monomeric reactants

    Get PDF
    Monomer solutions have high solubility and low solution viscosity. Since monomers are shipped in powder form and reaction to polyimide-acid prepolymer is omitted, the cost is low and handling is easy

    Curing agent for polyepoxides and epoxy resins and composites cured therewith

    Get PDF
    A curing for a polyepoxide is described which contains a divalent aryl radical such as phenylene a tetravalent aryl radical such as a tetravalent benzene radical. An epoxide is cured by admixture with the curing agent. The cured epoxy product retains the usual properties of cured epoxides and, in addition, has a higher char residue after burning, on the order of 45% by weight. The higher char residue is of value in preventing release to the atmosphere of carbon fibers from carbon fiber-epoxy resin composites in the event of burning of the composite

    Equations to assess the impact resistance of fiber composites

    Get PDF
    Numerical analysis of impact resistance of composite materials containing fibers is discussed. Mathematical model of longitudinal impact resistance is presented. Potential impact resistance of various fiber composites as obtained by numerical analysis is presented as plotted curve

    Classifying negative and positive points by optimal box clustering

    Get PDF
    In this paper we address the problem of classifying positive and negative data with the technique known as box clustering. A box is homogeneous if it contains only positive (negative) points. Box clustering means finding a family of homogeneous boxes jointly containing all and only positive (negative) points. We first consider the problem of finding a family with the minimum number of boxes. Then we refine this problem into finding a family which not only consists of the minimum number of boxes but also the points are covered as many times as possible by the boxes in the family. We call this problem the maximum redundancy problem. We model both problems as set covering problems with column generation. The pricing problem is a maximum box problem. Although this problem is NP-hard, there is available in the literature a combinatorial algorithm which performs well. Since the pricing has to be carried out also in the branch-and-bound search of the set covering problem we consider also how the pricing has to be modified to take care of the branching constraints. The computational results show a good behavior of the set covering approach

    Quantification and scaling of multipartite entanglement in continuous variable systems

    Get PDF
    We present a theoretical method to determine the multipartite entanglement between different partitions of multimode, fully or partially symmetric Gaussian states of continuous variable systems. For such states, we determine the exact expression of the logarithmic negativity and show that it coincides with that of equivalent two--mode Gaussian states. Exploiting this reduction, we demonstrate the scaling of the multipartite entanglement with the number of modes and its reliable experimental estimate by direct measurements of the global and local purities.Comment: 4 pages, 2 figures; to be published in Phys. Rev. Let
    • …
    corecore